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Abstract

Vehicle re-identification (re-id) remains challenging due

to significant intra-class variations across different cam-

eras. In this paper, we present our solution to AICity Ve-

hicle Re-id Challenge 2019. The limited training data mo-

tivates us to leverage the free data from the web and deploy

the two-stage learning strategy. The success of large-scale

datasets, i.e., ImageNet, inspires us to build a large-scale

vehicle dataset called VehicleNet upon the public web data.

Specifically, we combine the provided training set with other

public vehicle datasets, i.e., VeRi-776, CompCar and Ve-

hicleID as VehicleNet. In the first stage, the training set

is scaled up about 16 times, from 26,803 to 434,453 im-

ages. Despite the bias between different datasets, e.g., illu-

mination and scene, VehicleNet generally provides the com-

mon knowledge of the vehicle, benefiting the deeply-learned

model in learning the invariant representation towards dif-

ferent viewpoints. In the second stage, we further fine-tune

the trained model only on the original training set. The sec-

ond stage intends to minor the gap between VehicleNet and

the original training set. Albeit simple, we achieve mAP

75.60% on the private testing set without extra information,

e.g., temporal or spatial annotation of test data.

1. Introduction

Vehicle re-identification (re-id) is to spot the car of inter-

est in different cameras. It is challenging in the intra-class

variants, such as viewpoints, illumination and occlusion. In

the realistic scenario, vehicle re-id system demands a ro-

bust and discriminative visual representation. Recent years,

Convolutional Neural Network (CNN) achieves the state-

of-the-art performance in many computer vision tasks in-

cluding vehicle re-id [11, 15, 22], but CNN is data-hungry

and easy to over-fit small datasets. Instead of only using the

original training dataset, we first collect free vehicle data

from the web. Building upon this, we scale up the num-

ber of training images from 26, 803 to 434, 453 as a new

dataset called VehicleNet (See Table 1). We train the CNN

model to identify different vehicles, and extract features. In

Datasets
# Training Performance

Images Rank@1 mAP

CityFlow [14] † 26,803 73.65 37.65

+ VeRi-776 [11] +49,357 79.48 43.47

+ CompCar [17] +136,726 83.37 48.71

+ VehicleID [10] +221,567 83.37 47.56

VehicleNet 434,453 88.77 57.35

Table 1: Rank@1 (%) and mAP (%) accuracy with different

number of training images. Here we report the results based

on the validation set we splitted. † Note that we split a vali-

dation set from the training set, which leads to less training

data. We apply SE-ResNeXt101 [7] as the backbone model.

the experiment, we show that it is possible to train mod-

els with a combination of different datasets. When training

the model with more samples, we observe a consistent per-

formance boost, which is consistent with the observation in

some recent works [9, 12, 19]. Without explicit vehicle part

matching or attribute recognition, the CNN model learns the

viewpoint-invariant feature by seeing more vehicles. Albeit

simple, the proposed method achieves mAP 75.60% on the

private testing set without extra information, e.g., temporal

or spatial annotation of test data.

2. Our Approach

2.1. Dataset Analysis

CityFlow [14] is one of the largest vehicle re-id datasets.

There are bounding boxes of 666 vehicle identities anno-

tated. All images are collected from 40 cameras in a re-

alistic scenario at USA City. We follow the official train-

ing/test protocol, which results in 36,935 training images of

333 classes and 19,342 testing images of other 333 classes.

The training set is collected from 36 cameras, and test is

collected from 23 cameras. There are 19 overlapping cam-

eras. Official protocol does not provide a validation set. We

therefore further split the training set into a validation set

and a small training set. After the split, the training set con-

tain 26,803 images of 255 classes, and the validation query
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Datasets # Cameras # Images #IDs

CityFlow [14] 40 56,277 666

VeRi-776 [11] 20 49,357 776

CompCar [17] † - 136,726 4,701

VehicleID [10] ‡ 2 221,567 26,328

PKU-VD1 [16] - 1,097,649 1,232

PKU-VD2 [16] - 807,260 1,112

VehicleReID [18] 2 47,123 -

PKU-Vehicle [2] - 10,000,000 -

Vehicle-1M [4] 2 936,051 55,527

StanfordCars [1] - 16,185 196

Table 2: Public available datasets for vehicle re-

identification. †: We view the vehicle model produced in

different years as different classes, which leads to more

classes. ‡: The downloaded image number is slightly dif-

ferent with the report number in [10].

set includes 463 images of the rest 78 classes. We deploy

the all original training set as the validation gallery set.

2.2. Extra Datasets

We involve the three public datasets, i.e., VeRi-776 [11],

CompCar [17] and VehicleID [10] into training. It results in

434,453 training images of 31,805 classes as VehicleNet.

Note that the three public datasets are collected in differ-

ent places with the CityFlow dataset. There are no over-

lapping images with the validation set or the private test

set. We plot the data distribution of all four datasets in Fig-

ure 1. VeRi-776 [11] contains 49,357 images of 776 vehi-

cles from 20 cameras. The dataset is collected in the real

traffic scenario, which is close to the setting of CityFlow.

CompCar [17] is designed for the fine-grained car recogni-

tion. It contains 136,726 images of 1,716 car models. The

author provides the vehicle bounding boxes. By cropping

and ignoring the invalid bounding boxes, we finally obtain

136,713 images for training. The same car model made in

the different years may contain the color and shape differ-

ence. We, therefore, view the same car model produced

in the different years as different classes, which results in

4,701 classes.VehicleID [10] consists 2211,567 images of

26,328 vehicles. The vehicle images are collected in two

views, i.e., frontal and rear view. Despite the limited view-

points, the experiment shows that VehicleID also helps the

viewpoint-invariant feature learning. Other Datasets We

also review other public datasets in Table 2. Some datasets

contain limited images. Others lack ID annotations. There-

fore, we do not use these datasets, which may potentially

compromise the feature learning.

Figure 1: The image distribution per class in the vehicle

datasets CityFlow [14], VehicleID [10] , CompCar [17] and

VeRi-776 [11]. We observe that the two largest datasets,

i.e., VehicleID and CompCars suffer from the limited im-

ages per class. Note that there are only a few classes with

more than 40 images.

Backbones
Performance

Rank@1(%) mAP(%)

Naive Sampling 77.97 43.65

Balanced Sampling 76.03 40.09

Table 3: The Rank@1(%) and mAP (%) accuracy on the

validation set with two different sampling methods. Here

we use the ResNet-50 backbone.

2.3. Two­Stage Learning

In the first stage, we train the model on VehicleNet il-

lustrated in Section 2.2. We apply the backbone model pre-

trained on the ImageNet [13]. The classification layer of the

pre-trained model is removed. We add one fully-connected

layer of 512 dimensions and one batch normalization layer

followed by a new classification layer. The model learns

to identify different vehicles from 31, 805 different classes.

The cross-entropy loss is applied. As shown in Figure 2

(left), despite a large number of classes, the model could

converge within 60 epochs.

In the second stage, the classification layer of the trained

model is replaced with the new classifier of 333 classes. We

fine-tune the model only upon the original dataset. Attribute

to the good initial weights in the first stage, the model con-

verges quickly on the training set (Figure 2 (right)). We,

therefore, stop the training early at the 12-th epoch.

Sampling Policy. Since we introduce more training data

in the first stage, the data sampling policy has a large im-

pact on the final result. We compare two different sampling

policy. The naive method is to sample every image once in
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Figure 2: The training losses of the two stages. Due to the

large-scale data and classes, the first stage (left) takes more

epochs to converge. Attribute to the trained weight of the

first stage, the second stage (right) converge early.

every epoch. Another method is called balanced sampling

policy. The balanced sampling is to sample the images of

different class with equal possibility. As shown in Table 3,

the balanced sampling harms the result. We speculate that

the long-tailed data distribution (see Figure 1) makes the

balanced sampling have more chance to select the same im-

age in the classes with fewer images. The model, therefore,

is prone to over-fit the class with limited samples.

2.4. Post­processing

Several post-processing techniques are leveraged during

the inference stage as shown in Figure 3.

Cropped Images. We notice that the challenge provides

a relatively loose bounding box. Therefore, we re-detect

the vehicle with MaskRCNN [5]. In the submission, the

feature is averaged between the original images and cropped

images.

Model Ensemble. We adopt a straightforward late fu-

sion strategy, i.e., concatenating the features [20]. Given

one image xi, f
j

i is the extracted feature of the j-

th model. The pedestrian descriptor is represented

as:fi = [|f1

i |, |f
2

i |, ...|f
n
i |]. The |.| operator denotes l2-

normalization.

Query Expansion & Re-ranking. We adopt the unsuper-

vised clustering method, i.e., DBSCAN [3] to find the most

similar samples. The query feature is updated to the mean

feature of the other queries in the same cluster. Further-

more, we adopt the re-ranking method [21] to update the

final result.

Camera Verification. We use the camera verification to

further remove some hard negative samples. When training,

we train one CNN model to recognize the camera that the

photo is taken. When testing, we extract the camera-aware

features from the trained model and then cluster these fea-

tures. We applied the assumption that the query image and

the target images are taken in different cameras. Given a

query image, we remove the images of the same camera

cluster from candidate images.

Figure 3: The test pipeline. Given one input image and

cropped image, we extract feature from the trained models.

We normalize and concatenate the features. Then query ex-

pansion and camera verification are applied. Finally, we

utilize the re-ranking to retrieve more positive samples.

Backbones
Performance

Rank@1(%) mAP(%)

ResNet-50 [6] 77.97 43.65

DenseNet-121 [8] 83.15 47.17

SE-ResNeXt101 [7] 83.37 48.71

SENet-154 [7] 81.43 45.14

Table 4: The Rank@1(%) and mAP (%) accuracy with dif-

ferent backbones on the validation set.

3. Experiments

Implementation Details. The images are resized to 384 ×
384. We adopt the min-batch SGD with the weight decay of

5e-4 and a momentum of 0.9. In the first stage, we decay the

learning rate of 0.1 at the 40-th and 55-th epoch. We trained

32 models with different batchsizes and different learning

rates. We select 8 best models on the validation for further

training. In the second stage, we fine-tune the 8 models on

the original dataset. We decay the learning rate of 0.1 at

the 8-th epoch and stop training at the 12-th epoch. When

testing, we adopt the horizontal flipping and scale jittering,

which resizes the image with the scale factors [1, 0.9, 0.8]
to extract features.

Backbones. We observe that different backbones may lead

to different results. As shown in Table 4, SE-ResNeXt101

[7] arrives the best performance in the validation set. We

speculate that it is tricky to optimize some large neural

networks. We do not achieve a better result with SENet-

154 [7], which preforms better then SE-ResNeXt101 on Im-

ageNet.

More Data Matters. As shown in Table 1 , involving more

training data consistently improves the result. The model

sees more vehicle images taken by different cameras, and

learn the viewpoint-invariant features.

Stage I vs. Stage II. We compare the final results of the

Stage I and the Stage II on the private test set (see Table 5).

The model in Stage II surpasses the one in Stage I about 7%.

In the Stage I, the original training set only occupy 6% of

VehicleNet. The learned model, therefore, may not be opti-

mal for the original training/test set. Despite the quick train-

ing convergence in Stage II, the second stage learning helps

3



Performance

Rank@1(%) mAP(%)

Stage I 82.70 68.21

Stage II 87.45 75.60

Table 5: The Rank@1(%) and mAP (%) accuracy with dif-

ferent stages on the private test set. Post-processing meth-

ods are leveraged.

Rank Team Name mAP(%)

1 Zero One 85.54

2 UWIPL 79.17

3 ANU 75.89

4 expensiveGPUs 75.60

5 Traffic Brain 73.02

6 Desire 67.93

7 XINGZHI 60.91

8 UWD RC 60.78

9 MVM 58.62

10 flyZJ 58.27

Baseline [14] 32.0

Table 6: Competition results of AICity Vehicle Re-id Chal-

lenge. Our result is in bold.

to minor the gap between VehicleNet and original training

set.

4. Conclusion

In this paper, we present our solution to AICity Chal-

lenge. We build a large-scale dataset called VehicleNet with

free data from public datasets. The two-stage learning pol-

icy and other post-processing techniques are adopted. We

arrive at 75.60% mAP on the private testing set. Without

extra annotations, our team ranks 4 out of 84 teams (see Ta-

ble 6). In the future, we will report the result with the help

of temporal and spatial information.
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